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tigated. Stationary solutions are found. Their stability is discussed. Phase portraits for two types of symmetric
motions are calculated.
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I. INTRODUCTION

The mechanism of clustering of micro-objects moving in
water, as well as motility and shape of the clusters, attract a
lot of interest in various biological and industrial contexts. In
these problems, it is important to understand interactions be-
tween the micro-objects �e.g., bacteria �1� or microelectro-
mechanial systems� caused by the fluid flow, and especially
to determine stationary and periodic trajectories. In a quies-
cent viscous infinite fluid, two identical spheres always settle
under gravity with no change of relative configuration.
Therefore the simplest interesting model system is a cluster,
which consists of three identical heavy spheres. Its dynamics
is nonlinear, and in general chaotic, as shown numerically
within the point-force approximation �2�. Symmetric peri-
odic motions of three point particles and of three spheres
located at vertices of an isosceles triangle exist �3–5� and
the equilateral horizontal triangle is the stationary stable
solution.

In this work, other stationary solutions are found and their
properties are discussed, extending the ideas from Ref. �6�.
We start from analyzing such equilibria, where the particle
centers form an isosceles vertical triangle with the horizontal
base �in the following, such a configuration will be called
“symmetrical”�, and at least two spheres touch each other. In
Sec. III, the system of equations describing the motion of the
symmetrical configurations is specified, and the method to
solve it is outlined. In Sec. IV, the symmetrical equilibrium
configurations of the spheres are determined. In Sec. V, the
sphere centers are aligned horizontally, their motion is evalu-
ated and compared with the point-particle approximation. It
is shown that the spheres tend to an equilibrium configura-
tion. In Sec. VI, the asymptotic dynamics of the symmetrical
configurations close to this equilibrium is explicitly solved
and the equilibrium is shown to be stable against all the
symmetrical perturbations. In Sec. VII, the phase portrait of
the relative symmetrical motion of the spheres is determined.
In Sec. VIII, the symmetrically stable equilibrium is shown
to be unstable against nonsymmetrical perturbations. To
show physical significance of this equilibrium, another illus-
trative exemplary dynamics is investigated: isosceles tri-
angles with a horizontal base and a single pair of touching
spheres. The conclusions are given in Sec. IX.

II. MOBILITY PROBLEM

An infinite fluid of viscosity � is considered. Its low-
Reynolds-number flow is generated by settling of three iden-
tical spheres under gravity F=−Fêz, with instantaneous ve-
locities of the order of the Stokes velocity �the Strouhal
number is O�1��. The fluid velocity v�r� and pressure p�r�
satisfy the stationary Stokes equations �7�

��2v − �p = 0, � · v = 0. �1�

The stick boundary conditions are assumed at the surfaces of
the spheres. Positions of the sphere centers ri�t� satisfy the
following equations:

ṙi�t� = ��
k=1

3

�ik� · F, i = 1,2,3. �2�

The 3�3 mobility matrices �ik depend on the instantaneous
relative configuration of all the spheres, and are evaluated
numerically by the multipole expansion �8,9�. The algorithm
from Ref. �10� and its accurate numerical FORTRAN imple-
mentation described in Ref. �11� are applied, with the multi-
pole order L=4. Typically, such a truncation leads to 10−4

relative error of the friction and mobility coefficients, see,
e.g., Tables II and III in Ref. �10�. The set of the ordinary
differential equations �2� is solved numerically by the adap-
tive fourth-order Runge-Kutta method �12�. In the following,
distances will be normalized by the sphere diameter d, time
by �s=3��d2 /F �two Stokes times�, and mobilities by
1/ �3��d�, keeping the same notation. The dimensionless
variables satisfy Eq. �2� with F=1.

In the point-force approximation, the same units are used,
and a single point moves with the Stokes velocity of the
single sphere. The point-particle dynamics reads

ṙi = − �
k�i

Tik · êz − êz, �3�

with the dimensionless Oseen tensor

Tik =
3

8rik
�I + r̂ikr̂ik� , �4�

the unit vectors r̂ik= r̂ik /rik and the unit tensor I. Equation �3�
is integrated numerically by the adaptive fourth-order
Runge-Kutta method �12�.*Electronic address: mekiel@ippt.gov.pl
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III. DYNAMICS OF SYMMETRICAL CONFIGURATIONS

Assume for simplicity that initially the sphere centers
form an isosceles vertical triangle with the horizontal base.
From the symmetry of the Stokes equations it follows that
the triangle retains these properties in the course of time. The
apex sphere is labeled 2 and the two other spheres are la-
beled 1 and 3, as indicated in Fig. 1.

Dynamics of particles at vertices of an isosceles vertical
triangle with the horizontal base is interesting because of two
reasons. First, it might be helpful to understand relative dy-
namics of three point particles in vertical plane, which in
general is chaotic �2�. Second, such a symmetric configura-
tion is related to the family of stable periodic motions as a
limiting case. Oscillating particles stay at vertices of an isos-
celes triangle with the horizontal base; the triangle may come
very close �but never exactly� to the vertical position �3–5�.

The relative positions are parameterized as

r12 = �− x/2,0,z� , �5�

r32 = �x/2,0,z� , �6�

with rij �ri−r j. The distance x between the twin spheres 1
and 3 and the vertical separation z between the twins and the
apex sphere 2 satisfy the following system of equations:

ẋ = vx�x,z� , �7�

ż = vz�x,z� , �8�

with the initial values x�0�=x0, z�0�=z0. Here
vx=2�k=1

3 ��2k,xz−�3k,xz�, and vz=�k=1
3 ��2k,zz−�3k,zz�, with

the Cartesian components of �ik dependent only on x and z.
Once x�t�, z�t� are evaluated, then r2= �0,0 ,z2�t�� is obtained
by a direct integration of Eq. �2�.

IV. SYMMETRICAL EQUILIBRIA

In this section, equilibria for the dynamics of spheres �7�
and �8� will be found. From the symmetry it follows that
they are also stationary solutions of the general dynamics

�2�. The right-hand side of Eq. �7� vanishes if the twin
spheres 1 and 3 touch each other and the distance between
their centers x=1. In this case, the lubrication forces �13�
prevent spheres 1 and 3 from a relative motion and
vx�1,z�=0 at each point z. Equilibrium points z̃ are solutions
of the equation vz�1, z̃�=0. The function vz�1,z� is evaluated
numerically and plotted in Fig. 2, for all the configurations
with the single sphere 2 below the touching doublet. In this
case, z�	3/2, because the spheres do not overlap.

Two equilibria are seen. The first one, with
�x ,z�= �1,	3/2�, corresponds to the touching triplet of
spheres, with relative motions excluded by the lubrication
forces �13�. It is interesting to see that there exists also an-
other positive root zeq of the equation vz�1,z�=0. For a given
multipole order 1�L�30, zeq is evaluated numerically by
the standard bisection method �12�. Next, the limit L→	 is
taken,

zeq = 1.578634. �9�

�The dependence of zeq on L is discussed in Appendix A.�
In the following, it will be shown that Eq. �9� determines

the only equilibrium which attracts all close symmetrical tra-
jectories �5� and �6�. Now, vertical relative motion of the
horizontal touching doublet located above the singlet will be
analyzed, using the function plotted in Fig. 2. In the limit of
infinite z, the faster doublet and the slower singlet are not
influenced by each other and as a result vz=−0.3799554, see,
e.g., Ref. �14�. Starting from any z0
zeq, the relative dis-
tance z between the doublet and the singlet decreases with
time, because vz�0. If z0�zeq, then vz
0 and z increases
with time. It is remarkable that in this case a heavier doublet
is repelled by a lighter singlet located below. In both cases,
the system tends to the equilibrium position zeq, approaching
it after infinite time. Indeed, from Fig. 2 it is clear that
�vz�1,z� /�z�0, if z is close to zeq, and therefore 
z−zeq

decreases with time exponentially.

Consider now configurations where the touching spheres
are below the single one, with z�0. The Stokes equations
are invariant with respect to the time reversal, superposed

FIG. 1. “Symmetrical” configuration of spheres. FIG. 2. Mobility function for the symmetrical motion of the
touching spheres 1 and 3 with respect to the single sphere 2.
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with the reflection in the horizontal plane, which contains the
center of sphere 2. Therefore

vx�x,z� = − vx�x,−z�, vz�x,z� = vz�x,−z� . �10�

In particular, for z�0 the relative velocity is immediately
obtained from Fig. 2, using the relation vz�1,z�=vz�1,−z�.
Starting from negative z0, trajectories escape from −zeq. If
z0
−zeq, then the doublet is attracted by the singlet and
z→−	3/2. If z0�−zeq, then the doublet is repelled by the
singlet and z→−	.

Summarizing, equilibria of the dynamics �7� and �8�
are located at �x ,z�= �1, ±1.578634�, and on the curve
z2+x2 /4=1. In the first case, called “kissing,” the only
touching spheres are 1 and 3, see Figs. 3�a� and 3�g�. In the
second case, called “chain,” there are at least two pairs of
touching spheres: 12 and 23, see Figs. 3�b�–3�f�.

The equilibrium configurations settle with a stationary ve-
locity U, which is now related to the Stokes velocity
Us=F / �3��d�. In the first case �kissing�, U /Us=1.7543000.
In the second case �chain�, 1.6304582�U /Us�1.9022670;
the lower value is obtained if the sphere centers are aligned
horizontally �see Fig. 3�d��; the upper one if they form equi-
lateral triangle �see Figs. 3�b� and 3�f��. In Fig. 4, the settling
velocity U /Us is depicted as a function of the angle � be-
tween the chain links. Configurations reflected in a horizon-
tal plane �e.g., Fig. 3�c�� settle with the same velocity as the
original ones �e.g., Fig. 3�e��. Note that no equilibrium exists
within the point-particle approximation.

V. EVOLUTION OF SPHERES ALIGNED HORIZONTALLY

Now, evolution of nontouching spheres will be studied. In
Fig. 5, typical trajectories zi�xi� of sphere centers are shown,
if they are initially aligned horizontally. The solution of the
dynamics �2� is denoted as ri�t�= �xi�t� ,0 ,zi�t��, with
i=1,2 ,3. Trajectories of point particles, at the beginning co-
inciding with those of the spheres, after a finite time
t=36.74 collapse onto a single point, as depicted in Fig. 5,
and shown in the companion movie �15�.

In the following, the relative two-dimensional dynamics
�7� and �8� will be discussed. Evolution of the initial values
x0 and z0=0 is of special interest. The distance 
=x−1 be-
tween the surfaces of spheres 1 and 3 decreases monotoni-
cally, decaying exponentially to zero for long times, as illus-
trated in Fig. 6.

FIG. 3. Equilibrium configurations. a,g: “kissing;” b–f: “chain.”
Gravity points down.

FIG. 4. Settling velocity U /Us of the “chain” equilibrium con-
figuration versus the angle � between the chain links �solid line�.
For comparison, the settling velocity of the “kissing” equilibrium
configuration is marked �horizontal dashed line�.

FIG. 5. Trajectories of three sphere centers �dashed lines,
circles� and three point particles �solid lines, stars�, at t=0 centered
at x1=−2, x2=0, x3=2, z1=z2=z3=0. The symbols represent posi-
tions at times t=10, 20, and 30.

FIG. 6. Size 
�t�=x�t�−1 of the gap between surfaces of the
spheres 1 and 3. Initially 
0=3 and z0=0.
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For close twin spheres, if x0 is sufficiently small, then
their vertical separation z from sphere 2 increases with time.
For a large x0, at the beginning z increases, significantly ex-
ceeding zeq, then drops down below zeq to approach it slowly
again, as depicted in Fig. 7.

Numerical integration of Eqs. �7� and �8� is limited to the
gap sizes 
�4�10−14. It is remarkable that for such tiny
gaps between the surfaces, the vertical separation z still
differs from its equilibrium value zeq by 3.7%. Physically,
this difference is explained by the significant rotation of
spheres 1 and 3, with the corresponding dimensionless
angular velocities �1y =3.2%, and �3y =−�1y. �Angular ve-
locities are normalized by the inverse of the Stokes time,
2Us /d=2F / �3��d2�.� This estimation follows from the nu-
merical evaluation of the angular velocity �1y as a function
of time, plotted in Fig. 8. ��1y depends linearly on F; the
proportionality coefficient is easily evaluated by the multi-
pole method if configuration of the sphere centers is known.�

VI. ASYMPTOTIC SYMMETRICAL DYNAMICS CLOSE
TO THE KISSING EQUILIBRIUM

Close to the kissing equilibrium shown in Fig. 3�a�, for
very small 
 and small z−zeq, it is possible to solve the
dynamics �7� and �8� explicitly. To this goal, we express the
known external forces and torques exerted on the spheres,
F1x=0, F1z=−1, T1y =0, F2z=−1, as linear combinations of
the unknown translational and angular velocities U1x, U1z,
�1y, U2z of the spheres, with a 4�4 matrix � of the friction
coefficients. The simplicity of the friction problem follows
from the symmetry of our configuration, since U3x=−U1x,
U3z=U1z, �3y =−�1y, and similarly for the forces and the
torques. From �, we separate out the following two-sphere
contribution:

��13� =�
X11

A − X13
A 0 0 0

0 Y11
A + Y13

A Y11
B + Y13

B 0

0 Y11
B + Y13

B Y11
C − Y13

C 0

0 0 0 0
� , �11�

with the two-sphere friction matrix components denoted after
Ref. �13� by X11

A , X13
A , Y11

A , Y13
A , Y11

B , Y13
B , Y11

C , and Y13
C . The

point is that X11
A −X13

A and Y11
C −Y13

C are the only singular
contributions when 
→0. We perform the asymptotic expan-
sion of � �13� in 
; we use the Jeffrey-Onishi expressions
�13�, neglecting terms O�
 ln 
�. The rest, ��123�=�−��13�,
is a regular function of 
; we evaluate it numerically at
the equilibrium. Next, we use MATHEMATICA to invert �.

Neglecting terms O�
�, using the relations 
̇=2U1x and
ż=U1z−U2z, and allowing for a small perturbation of z
around the equilibrium, we obtain asymptotic approximation
of Eqs. �7� and �8�,


̇ = − a
 , �12�

ż = − c�z − zeq� −
e

ln 
 −1 + b
. �13�

The constants a=0.80, b=4.0, and e=0.22 follow from the
inversion of � at the equilibrium. The constant c is evaluated
numerically as c=−��vz�1,z� /�z�z=zeq

=0.124.
By integrating Eq. �12� and the trajectory equation

dz

d

=

c

a

�z − zeq� +

e

a
�ln 
 −1 + b�
, �14�

the asymptotic solution is easily obtained


 = 
0e−at, �15�

z − zeq = 
�z0 − zeq�e�0 − �e/a��Ei��� − Ei��0���e−�, �16�

FIG. 7. Vertical separation z�t�. Initially x0=4, z0=0. Inset: com-
parison with the asymptotic expression �16�.

FIG. 8. Angular velocity �1y�t�. Initially x0=4, z0=0.
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where �=c�ln 
 −1+b� /a=c�t+ �ln 
0
−1+b� /a�, and its value

at t=0 is equal to �0=c�ln 
0
−1+b� /a. As before, 
0=x0−1.

The symbol Ei��� denotes the exponential integral, the
Cauchy principal value of �−	

� dtet / t.
Precision of the asymptotic solutions �15� and �16� is il-

lustrated in the inset of Fig. 7. For gaps 
�10−4, the numeri-
cal z�t� is approximated with 5% accuracy by the asymptotic
one. Similar estimation holds for ln 
�t�.

For very large times �for very small gaps 
�, �→	,
and Ei�����1+1/��e� /�. In this case, relation �16� further
simplifies,

z − zeq � −
e

c

1

ln 
 −1 + b
if 
 → 0, �17�

and �x ,z�→ �1,zeq�= �1,1.578634�, if t→	. The equilibrium
solution �1,zeq� of the dynamics �7� and �8� is stable.

VII. SYMMETRICAL PHASE PORTRAIT

In Fig. 9, we numerically evaluate the phase portrait for
the symmetrical dynamics of spheres �7� and �8�. The two-
dimensional phase space excludes non-overlapping spheres,
and is therefore given as 
�x ,z� :x�1 and x2 /4+z2�1�.

Trajectories of the spheres initially aligned horizontally
practically keep the same shape as long as all the spheres are
at large distances from each other. As illustrated in Fig. 10,
this “ideal” shape is given by the scale-free point-particle
dynamics.

In Fig. 9, another family of trajectories is also plotted,
with z=	 at t=−	. Such pairs of spheres, initially far above
the single one, and practically noninteracting with the sin-
glet, decrease the relative vertical distance z with time and
tend to the kissing equilibrium, shown in Fig. 3�a�; they
never reach z=0.

From the last section it follows that the equilibrium
�1,zeq� is a stable improper node. At this point, dz /dx=−	
for all the trajectories. Indeed, according to Eq. �17�,
dz /dx�−�e /c� / ��ln 
 −1+b�2
� if �x ,z� is sufficiently close
to �1,zeq�.

To illustrate how the trajectories approach the kissing
equilibrium, in Fig. 11 we plot z versus 1/ �ln 
 −1+b�, using
numerical results and asymptotic expressions �16� and �17�.

For z�0, the motion is obtained by the time reversal
superposed with the reflection in the plane z=0, using Eq.
�10�. In particular, the kissing equilibrium �1,−zeq� is an un-
stable improper node.

It remains to discuss stability of the chain equilibria. To
this goal, in Fig. 12 trajectories very close to the chain equi-
librium line x2 /4+z2=1 are plotted. They all evolve towards

FIG. 9. Phase portrait for the symmetrical dynamics of spheres.
The stable “kissing” node �•� is �x ,z�= �1,1.578634�. Dotted line:
unstable “chain” equilibria at x2 /4+z2=1.

FIG. 10. Sphere trajectory and its point-particle counterpart.

FIG. 11. Phase portrait close to the stable node �•�; numerical
trajectories as in Fig. 9, plus those with x0 /2=1.001,1.01,1.05,
1.2,1.3, and z0=0. For small 
, evolution is continued with the
asymptotic expression �16� �dotted line�. The limiting straight line
�17� is also marked.
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the kissing equilibrium �Fig. 3�a��. These numerical results
indicate that the chain equilibria are unstable against the
symmetrical perturbations. The symmetrical relative
dynamics of spheres has the only stable �kissing� equilibrium
at �x ,z�= �1,1.578634�. In the following, nonsymmetrical
configurations will be also considered to check if the sym-
metrically stable kissing equilibrium is stable against all
perturbations.

VIII. ILLUSTRATIVE EXAMPLE OF NONSYMMETRICAL
DYNAMICS

A family of initial conditions is considered, with the
sphere centers located at vertices of an isosceles triangle with
the horizontal base. In general, the triangle is nonvertical.
Such a configuration is parametrized by x, y, and z, where
�r12+r32� /2= �0,y ,z� and r31= �x ,0 ,0�. Its projection on the
xz plane is illustrated in Fig. 1, and projection on the yz plane
in Fig. 13. In addition, it is assumed that the base spheres
contact with each other �x=1�. From symmetry it follows
that while such configurations evolve, they retain all these
properties.

The dynamics of the relative motion has a simple form in
polar coordinates. It is sufficient to consider only 0����.
Owing to symmetry, F� =F sin � gives rise only to the trans-

verse velocity r�̇, and Fr =−F cos � only to the radial veloc-

ity ṙ. With the chosen normalization F=1 and the dynamics
reads

r�̇ = B�r�sin � , �18�

ṙ = − C�r�cos � . �19�

The mobility function C�r�=−vz�1,r� has been already cal-
culated and plotted in Fig. 2. The other mobility function
B�r� is evaluated in a similar way from the multipole expan-
sion, and plotted in Fig. 14.

Note the importance of transverse lubrication effects. For

r�r−	3/2�1 �very small gaps between the surfaces�,
B�1/ ln 
r

−1. Such a slow decay of the transverse relative
translational velocities is related to significant angular ve-
locities of individual spheres. �To compare, radial lubrication
effects lead to the linear scaling of the radial relative trans-
lational velocities C�−0.7
r.�

From the dynamics �18� and �19�, the phase paths are
obtained as

ln
sin �

sin �0
= − �

r0

r

dr�
B�r��

r�C�r��
, if r0 � zeq, �20�

r = zeq, otherwise, �21�

with r=r0 and �=�0 at t=0. The motion along r=zeq satisfies

tan
�

2

tan
�0

2

= exp�B�zeq�
zeq

t� , �22�

therefore the point �=� is reached after infinite time. The
phase portrait for this dynamics is numerically evaluated and
plotted in Fig. 15.

Both kissing equilibria now represent saddle points, and
therefore are unstable. There exist a heteroclinic path �16�: a
half-circle of radius r=zeq�1.578634. It separates the re-
gions of closed and open trajectories. If r�zeq or �=0, then
the three spheres will for ever stay together within a cluster.

FIG. 12. Numerical trajectories �solid lines� close to the “chain”
equilibria �dotted line�. Specifically, x /2=1.001,1.05,1.01,1.1 at
z=0.

FIG. 13. Configuration at an isosceles triangle with a horizontal
base �in general nonvertical�. Surfaces of the base spheres touch
each other.

FIG. 14. The mobility function B�r�. Inset: for configurations
close to equilateral triangles �small r�, B is plotted versus
1/ ln�r−	3/2�−1.
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The other part of the phase space contains configurations
which ultimately split into a faster pair of spheres and a
slower singlet.

Additional equilibria for the dynamics �18� and �19� are
found at each point of the half-circle r=	3/2, by solving
B�r�=C�r�=0. These equilibria correspond to slanted equi-
lateral triangles. They are also stationary configurations of
the general dynamics �2�. Each equilibrium with 0����
and r=	3/2 is unstable. Indeed, a small perturbation with

��
� and r�
	3/2 is repelled, since �̇�
0. On the other
hand, the equilibrium �=� and r=	3/2 is a stable node—its
arbitrary perturbation ��� ,r�� is attracted, as it follows from

the analysis of signs of �̇� and ṙ�. This ‘‘chain’’ configura-
tion, shown in Fig. 3�f�, is the only stable equilibrium of the
dynamics of isosceles triangles with a horizontal base of unit
length.

IX. CONCLUSIONS

In this work, relative dynamics of three heavy spheres
located at vertices of an isosceles vertical triangle with the
horizontal base has been investigated. For this symmetrical
dynamics, equilibria have been determined and shown in
Fig. 3. They contain one, two or three pairs of touching
spheres. It has been shown numerically that the equilibria
with y=0 and �x ,z�= �1,−1.578634� or x2 /4+z2=1 �see Figs.
3�b�–3�g�� are unstable against the symmetrical perturbations
�5� and �6�. For a large class of the initial symmetrical
conditions, the system evolves towards the stable node
�x ,z�= �1,1.578634� �see Fig. 3�a��, reaching it after infinite
time. The corresponding point-force solution is singular: af-
ter a finite time, all the particles collapse onto a single point
with infinite velocities.

A complementary two-dimensional dynamics �in the
perpendicular plane� has been also studied: relative motion
of configurations with the sphere centers at isosceles �in
general nonvertical� triangles with the horizontal base,
and the base spheres touching each other. This dynamics
contains the symmetrical equilibria at �x ,y ,z�= �1,0 , ±zeq�,
�1,0 , ±	3/2�, and also a new family of nonsymmetrical
equilibria at x=1 and z2+y2=3/4 �slanted equilateral tri-
angles with the spheres at contact�. The node �1,0 ,−	3/2�
is the only stable equilibrium of this dynamics. Although
both kissing equilibria �x ,y ,z�= �1,0 , ±zeq� are unstable,
they are connected by a separatrix, which discriminates
between configurations of spheres, which form a stable clus-
ter, and those which are going to split into two smaller
clusters.

The stationary solutions presented here, in addition to
their physical and biological importance, may be used as
benchmarks for numerical simulations of many-particle
systems.
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FIG. 15. Phase portrait for the relative dynamics of spheres,
which form an isosceles triangle with a horizontal base of unit
length. Dotted line: equilibria at equilateral triangles.

FIG. 16. The equilibrium parameter zeq versus 1/L4.
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APPENDIX: HOW DOES THE KISSING EQUILIBRIUM
CONFIGURATION DEPEND ON THE MULTIPOLE

ORDER?

In this Appendix, the equilibrium separation zeq between
the kissing pair and the singlet is calculated for all the mul-
tipole orders 1�L�30. For L�10, the results are depicted
in Fig. 16, and for L�10, in Table I.

As illustrated in Fig. 16, in the limit L→	 one recovers
Eq. �9� with zeq=1.578634. Note that, according to Table I,
the kissing equilibrium configuration is determined with 2%
accuracy even if the multipole expansion is truncated at as
low multipole order as L=1. The multipole order L=4, used
in this paper to evaluate evolution, is standard for precise
calculations �11�. Here, it gives zeq with the 10−4 accuracy.
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TABLE I. The equilibrium parameter zeq for low values of L.

L zeq

1 1.544187

2 1.577183

3 1.579872

4 1.578783

5 1.578620

6 1.578610

7 1.578613

8 1.578621

9 1.578627

10 1.578631
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